Matlab Signal Processing Toolbox Moving Average

Ich muss einen gleitenden Durchschnitt über eine Datenreihe innerhalb einer for-Schleife berechnen. Ich muss den gleitenden Durchschnitt über N9 Tage erhalten. Das Array Im-Berechnen ist 4 Reihe von 365 Werten (M), die selbst Mittelwerte eines anderen Satzes von Daten sind. Ich möchte die Mittelwerte meiner Daten mit dem gleitenden Durchschnitt in einem Diagramm darstellen. Ich googeln ein wenig über gleitende Durchschnitte und den conv Befehl und fand etwas, das ich versuchte, in meinem Code umzusetzen: So grundsätzlich berechne ich meinen Durchschnitt und plot ihn mit einem (falschen) gleitenden Durchschnitt. Ich wählte die wts Wert direkt an der Mathworks-Website, so dass ist falsch. (Quelle: mathworks. nl/help/econ/moving-average-trend-estimation. html) Mein Problem aber ist, dass ich nicht verstehe, was dieses wts ist. Könnte jemand erklären, wenn es etwas mit den Gewichten der Werte zu tun hat: das ist in diesem Fall ungültig. Alle Werte werden gleich gewichtet. Und wenn ich das völlig falsch mache, könnte ich etwas Hilfe dabei haben Mein aufrichtigster Dank. Die Verwendung von conv ist eine hervorragende Möglichkeit, einen gleitenden Durchschnitt zu implementieren. In dem Code, den Sie verwenden, ist wts, wie viel Sie jeden Wert wiegen (wie Sie ahnen). Die Summe dieses Vektors sollte immer gleich Eins sein. Wenn Sie jeden Wert gleichmäßig gewichten und eine Größe N bewegten Filter dann tun möchten, würden Sie tun möchten Mit dem gültigen Argument in conv wird mit weniger Werten in Ms, als Sie in M ​​haben. Verwenden Sie diese, wenn Sie dont die Auswirkungen von Nullpolsterung. Wenn Sie die Signalverarbeitung Toolbox haben, können Sie cconv verwenden, wenn Sie einen kreisförmigen gleitenden Durchschnitt ausprobieren möchten. Etwas wie Sie sollten die conv und cconv Dokumentation für weitere Informationen lesen, wenn Sie havent bereits. Sie können Filter verwenden, um einen laufenden Durchschnitt zu finden, ohne eine for-Schleife zu verwenden. Dieses Beispiel findet den laufenden Durchschnitt eines 16-Element-Vektors unter Verwendung einer Fenstergröße von 5. 2) glatt als Teil der Curve Fitting Toolbox (die in den meisten Fällen verfügbar ist) yy glatt (y) glättet die Daten in dem Spaltenvektor Y unter Verwendung eines gleitenden mittleren Filters. Die Ergebnisse werden im Spaltenvektor yy zurückgegeben. Die Standardspanne für den gleitenden Durchschnitt ist 5.Moving Average Filter (MA Filter) Loading. Das gleitende Mittelfilter ist ein einfaches Tiefpassfilter (Finite Impulse Response), das üblicherweise zum Glätten eines Arrays von abgetasteten Daten / Signalen verwendet wird. Es benötigt M Abtastwerte von Eingang zu einem Zeitpunkt und nimmt den Durchschnitt dieser M-Abtastungen und erzeugt einen einzigen Ausgangspunkt. Es ist eine sehr einfache LPF (Low Pass Filter) Struktur, die praktisch für Wissenschaftler und Ingenieure, um unerwünschte laute Komponente aus den beabsichtigten Daten zu filtern kommt. Mit zunehmender Filterlänge (Parameter M) nimmt die Glätte des Ausgangs zu, während die scharfen Übergänge in den Daten zunehmend stumpf werden. Dies impliziert, dass dieses Filter eine ausgezeichnete Zeitbereichsantwort, aber einen schlechten Frequenzgang aufweist. Der MA-Filter erfüllt drei wichtige Funktionen: 1) Es benötigt M Eingangspunkte, berechnet den Mittelwert dieser M-Punkte und erzeugt einen einzelnen Ausgangspunkt 2) Aufgrund der Berechnungen / Berechnungen. Führt das Filter eine bestimmte Verzögerung ein 3) Das Filter wirkt als ein Tiefpaßfilter (mit einer schlechten Frequenzbereichsantwort und einer guten Zeitbereichsantwort). Matlab-Code: Der folgende Matlab-Code simuliert die Zeitbereichsantwort eines M-Point Moving Average Filters und zeigt auch den Frequenzgang für verschiedene Filterlängen. Time Domain Response: Auf dem ersten Plot haben wir die Eingabe, die in den gleitenden Durchschnitt Filter geht. Der Eingang ist laut und unser Ziel ist es, den Lärm zu reduzieren. Die nächste Abbildung ist die Ausgangsantwort eines 3-Punkt Moving Average Filters. Es kann aus der Figur abgeleitet werden, dass der Filter mit 3-Punkt-Moving-Average bei der Filterung des Rauschens nicht viel getan hat. Wir erhöhen die Filterabgriffe auf 51 Punkte und wir können sehen, dass sich das Rauschen im Ausgang stark reduziert hat, was in der nächsten Abbildung dargestellt ist. Wir erhöhen die Anzapfungen weiter auf 101 und 501, und wir können beobachten, dass auch wenn das Rauschen fast Null ist, die Übergänge drastisch abgebaut werden (beobachten Sie die Steilheit auf beiden Seiten des Signals und vergleichen Sie sie mit dem idealen Ziegelwandübergang Unser Eingang). Frequenzgang: Aus dem Frequenzgang kann behauptet werden, dass der Roll-off sehr langsam ist und die Stopbanddämpfung nicht gut ist. Bei dieser Stoppbanddämpfung kann klar sein, daß der gleitende Durchschnittsfilter kein Frequenzband von einem anderen trennen kann. Wie wir wissen, führt eine gute Leistung im Zeitbereich zu einer schlechten Leistung im Frequenzbereich und umgekehrt. Kurz gesagt, der gleitende Durchschnitt ist ein außergewöhnlich guter Glättungsfilter (die Aktion im Zeitbereich), aber ein außergewöhnlich schlechtes Tiefpassfilter (die Aktion im Frequenzbereich) Externe Links: Empfohlene Bücher: Primäre SidebarDocumentation In diesem Beispiel wird gezeigt, wie Verwenden Sie gleitende Mittelfilter und Resampling, um die Auswirkungen von periodischen Komponenten der Tageszeit auf die stündliche Temperaturablesung zu isolieren und unerwünschte Leitungsgeräusche aus einer offenen Spannungsmessung zu entfernen. Das Beispiel zeigt auch, wie die Pegel eines Taktsignals zu glätten sind, während die Kanten durch Verwendung eines Medianfilters bewahrt werden. Das Beispiel zeigt auch, wie ein Hampel-Filter verwendet wird, um große Ausreißer zu entfernen. Motivation Glättung ist, wie wir wichtige Muster in unseren Daten zu entdecken, während Sie Dinge, die unwichtig sind (d. H. Rauschen). Wir verwenden Filter, um diese Glättung durchzuführen. Das Ziel der Glättung ist es, langsame Änderungen im Wert zu produzieren, so dass seine einfacher zu sehen, Trends in unseren Daten. Manchmal, wenn Sie Eingangsdaten untersuchen, können Sie die Daten glatt machen, um einen Trend im Signal zu sehen. In unserem Beispiel haben wir eine Reihe von Temperaturmessungen in Celsius genommen jede Stunde am Logan Flughafen für den gesamten Monat Januar 2011. Beachten Sie, dass wir visuell sehen können, die Wirkung, die die Tageszeit auf die Temperaturwerte hat. Wenn Sie sich nur für die tägliche Temperaturschwankung im Laufe des Monats interessieren, tragen die stündlichen Fluktuationen nur zu Lärm bei, was die täglichen Variationen schwer unterscheiden kann. Um den Effekt der Tageszeit zu entfernen, möchten wir nun unsere Daten mit einem gleitenden Mittelfilter glätten. Ein Moving Average Filter In seiner einfachsten Form nimmt ein gleitender Durchschnittsfilter der Länge N den Durchschnitt jeder N aufeinanderfolgenden Samples der Wellenform an. Um einen gleitenden Mittelwertfilter auf jeden Datenpunkt anzuwenden, konstruieren wir unsere Koeffizienten unseres Filters so, dass jeder Punkt gleich gewichtet wird und 1/24 zum Gesamtdurchschnitt beiträgt. Dies gibt uns die durchschnittliche Temperatur über jeden Zeitraum von 24 Stunden. Filterverzögerung Beachten Sie, dass der gefilterte Ausgang um etwa zwölf Stunden verzögert wird. Dies ist auf die Tatsache zurückzuführen, dass unser gleitender Durchschnittsfilter eine Verzögerung hat. Jedes symmetrische Filter der Länge N hat eine Verzögerung von (N-1) / 2 Abtastungen. Wir können diese Verzögerung manuell berücksichtigen. Extrahieren von Durchschnittsdifferenzen Alternativ können wir auch das gleitende Mittelfilter verwenden, um eine bessere Schätzung zu erhalten, wie die Tageszeit die Gesamttemperatur beeinflusst. Dazu werden zuerst die geglätteten Daten von den stündlichen Temperaturmessungen subtrahiert. Dann segmentieren Sie die differenzierten Daten in Tage und nehmen Sie den Durchschnitt über alle 31 Tage im Monat. Extrahieren von Peak Envelope Manchmal möchten wir auch eine glatt variierende Schätzung haben, wie sich die Höhen und Tiefen unseres Temperatursignals täglich ändern. Um dies zu erreichen, können wir die Hüllkurvenfunktion verwenden, um extreme Höhen und Tiefen zu verbinden, die über eine Untermenge der 24-Stundenperiode erkannt werden. In diesem Beispiel stellen wir sicher, dass es mindestens 16 Stunden zwischen jedem extrem hohen und extrem niedrigen Niveau gibt. Wir können auch ein Gefühl dafür, wie die Höhen und Tiefen sind Trends, indem sie den Durchschnitt zwischen den beiden Extremen. Weighted Moving Average Filter Andere Arten von Moving Average Filtern gewichten nicht jede Probe gleichermaßen. Ein weiterer gemeinsamer Filter folgt der Binomialexpansion von (1 / 2,1 / 2) n Dieser Filtertyp approximiert eine Normalkurve für große Werte von n. Es ist nützlich zum Herausfiltern von Hochfrequenzrauschen für kleine n. Um die Koeffizienten für das Binomial-Filter zu finden, falten Sie 1/2 1/2 mit sich selbst und konvergieren dann iterativ den Ausgang mit 1/2 1/2 a vorgeschriebener Anzahl von Malen. Verwenden Sie in diesem Beispiel fünf Gesamt-Iterationen. Ein anderer Filter, der dem Gaußschen Expansionsfilter ähnlich ist, ist der exponentiell gleitende Durchschnittsfilter. Diese Art des gewichteten gleitenden Durchschnittsfilters ist einfach zu konstruieren und erfordert keine große Fenstergröße. Sie passen einen exponentiell gewichteten gleitenden Durchschnittsfilter durch einen Alpha-Parameter zwischen null und eins an. Ein höherer Wert von alpha wird weniger Glättung haben. Untersuche die Messwerte für einen Tag. Wähle dein Land


Comments

Popular posts from this blog

Forex Scalping Strategy Forum